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ABSTRACT
Sudoku is a logic-based, combinatorial number-placement puzzle

that has been popular since the late 20th century. Solving n2xn2

grids of nxn blocks tends to become increasingly difficult due to

combinatorial explosion. As a result, a sequential implementation

of a Sudoku puzzle solver can become both data- and compute-

intensive. In this work, we construct parallel implementations of

the Sudoku puzzle-solving algorithm using constraint propaga-

tion, storing already-explored grids, and storing to-be-explored

grids. Savings in execution time result from different thread man-

agement methods and data sharing methods. Threads attempt to

solve the puzzle using depth-first search. Also, the implemented

Sudoku puzzle-solving algorithm specifically solves 16x16 grids of
4x4 blocks.

In the first phase of reducing execution time via multi-threading,

we propose to implement a global data structure to store already-

explored grids, a thread-local data structure to store to-be-explored

grids, and have threads that complete its branch to begin work on a

new branch until a solution is found. In the second phase of reducing

execution time, we propose to implement a global data structure

to store to-be-explored grids along with already-explored grids,

and have threads work in the same branch until it is exhausted,

then begin work in a new branch until a solution is found. Our

experiments show that our different thread management and data

sharing methods enable significant reductions in execution time

(2.42-45.04x) while correctly solving the Sudoku puzzle.
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1 INTRODUCTION
Sudoku was designed in 1979 as a numerical combinatorial puzzle

by Howard Garns, an American architect. In late 2004, Sudoku

grew in popularity after it was published in newspapers as a regu-

lar feature. The 9-by-9 grid has been the most common grid size,

with 6,670,903,752,021,072,936,960 possible combinations. As the

grid size grows larger, the puzzle rapidly becomes more complex,

with the 16-by-16 grid having approximately 5.96x1098 possible
combinations.

Regardless of the size of the grid, Sudoku has two rules to follow

at all times. Each of n2 blocks must contain all the numbers from
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Table 1: Example 9x9 Solved Sudoku Square

7 2 6 4 9 3 8 1 5

3 1 5 7 2 8 9 4 6

4 8 9 6 5 1 2 3 7

8 5 2 1 4 7 6 9 3

6 7 3 9 8 5 1 2 4

9 4 1 3 6 2 7 5 8

1 9 4 8 3 6 5 7 2

5 6 7 2 1 4 3 8 9

2 3 8 5 7 9 4 6 1

Table 2: Example 9x9 Sudoku Problem

2 6 8 1

3 7 8 6

4 5 7

5 1 7 6 9

3 9 5 1 2

4 3 2

1 3 2

5 2 4 3 8 9

3 8 4 6

1 to n2 and can only appear once in a row, column, or nxn block.

When all the cells in the grid contain a number and satisfy the rules,

the puzzle is solved.

There are various Sudoku solving algorithms that aim to solve the

puzzle quickly with a computer, through the use of rapid guessing,

stochastic search, backtracking, and/or constraint programming.

This work aims to reduce the execution time of solving 16x16

Sudoku puzzles through the use of constraint satisfaction, back-

tracking, and parallel programming. Section 2 gives a brief explana-

tion of the basic rules of solving a Sudoku puzzle and explains the

sequential implementation of the algorithm stated above. Section 3

explains the first attempt at reducing execution time by parallelizing

the algorithm. Section 4 explains the execution time improvements

made upon Section 3 by using a different thread management and

data sharing implementation.

The experiments were conducted on a desktopwith the following

configuration:

• Intel Core i7-6800K, 6 cores with hyper-threading (resulting

in 12 logical threads) @ 3.91 GHz

• 16 GB DDR4 RAM

• Bash on Ubuntu on Windows 10

2 SEQUENTIAL IMPLEMENTATION
This section provides an overview of the sequential implementation

of the Sudoku algorithm. While many methods to solve Sudoku

puzzles exist, such as stochastic search, we focus on constraint

satisfaction and backtracking algorithms as it would be able to

solve all sudokus and have a fast solving time.
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Figure 1: Constraint satisfaction example.
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(b) After inserting value 7 to (2,3)

Algorithm 1 presents our implementation of the constraint sat-

isfaction algorithm. The function REDUCE() removes value from
the set of possible values in each cell in the respective row, column,

and the nxn block of the index. Each of the cells in a n2xn2 grid
stores a set of possible values from 1 to n2. As cells are reduced to

only one possible value, the cardinality of the set of possible values

in neighboring cells become smaller. This increases the probability

that one of the values in the set is valid to reach the solution.

2.1 Constraint Satisfaction Algorithm

Algorithm 1 Constraint Satisfaction

1: procedure REDUCE(index ,value,дrid)
2: row ← get_row(index)
3: col ← get_col(index)
4: for each cell ∈ row do
5: cell .remove(value)
6: end for
7: for each cell ∈ col do
8: cell .remove(value)
9: end for
10: for each cell ∈ get_subgrid(index) do
11: cell .remove(value)
12: end for
13: end procedure

Figure 1 illustrates constraint satisfaction by setting the value

7 to cell (2, 3), and removing the value 7 from all cells in the same

row, column, and 3-by-3 block.

2.2 Determining Next Derived Grid

Algorithm 2 Determining Next Derived Grid

1: procedure min_possible_values(дrid .unsolved)
2: ▷ unsolved contains a set of index values of cells with more

than one possible value

3: for each index ∈ unsolved do
4: if index .num_possible_values() < MIN then
5: MIN ← index
6: end if
7: end for
8: returnMIN , index .value
9: end procedure

Algorithm 2 presents our implementation to determine the next

grid to explore. Since there is a higher probability that a value in

a smaller set is correctly placed in the grid, we use unsolved to

determine which cell has the minimum set of possible values due

to constraint satisfaction updates. Each grid has an unsolved set,
which contains the index value of cells that have more than one

possible value.

2.3 Solving Algorithm

Algorithm 3 Grid Validity

1: procedure valid_grid(дrid)
2: ▷ checks uniqueness of values in row

3: for each cell ∈ row do
4: if cell .num_possible_values() == 1 then
5: row_index_set .push_back(cell.value)
6: end if
7: end for
8: if row_index_set .is_not_unique() then
9: return f alse
10: end if
11: ▷ checks uniqueness of values in column

12: for each cell ∈ col do
13: if cell .num_possible_values() == 1 then
14: col_index_set .push_back(cell.value)
15: end if
16: end for
17: if col_index_set .is_not_unique() then
18: return f alse
19: end if
20: ▷ checks uniqueness of values in subgrid

21: for each subдrid ∈ дrid do
22: for each cell ∈ subдrid do
23: if cell .num_possible_values() == 1 then
24: subдrid_index_set .push_back(cell.value)
25: end if
26: end for
27: end for
28: if subдrid_index_set .is_not_unique() then
29: return f alse
30: end if
31: return true
32: end procedure

Sudoku has two simple rules to follow, which is presented in

the implementation of Algorithm 3. First, each of the n2 blocks

must contain all the numbers from 1 to n2. Second, each number

can only appear once in a row, column, or nxn block. Algorithm 3

presents our implementation of determining the validity of the grid

after completing REDUCE(). The algorithm can also be viewed as an

exploration of a game tree (see Figure 2) such that each node of the

tree represents a game state (i.e., a grid). The REDUCE() function

performs constraint satisfaction over a game state G to generate

G′; this G′ becomes a child of G in the game tree.

VALID_GRID() is called after each call to REDUCE() in order to

guarantee a grid G satisfies the rules of Sudoku. In some occasions,
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Figure 2: A representation of the game tree. Black cells are cells that have one value. Colored cells (red cells represent values that
causes an invalid grid) are values being tested for that game state. White cells are cells with more than one possible value. Note that the

children of grid 4 have an addition black cell, suggesting that constraint satisfaction caused that cell to have only one possible value.

after constraint satisfaction was completed on a grid G to generate

G′, cells in the same row, column, ornxn block may result in having

only one possible value. Although this is not an issue, these cells

may also have the same possible value, and thus making the G′
invalid.

If G′ is valid, G′ is compared to a set of already expanded grids

(described as the explored set), which is stored as a red-black tree.

To order grids in the tree, we compare the bitstrings of G′ to the

bitstring of the grids in the tree. This bitstring, which represents a

grid, contains all sets of possible values of that grid. If the bitstrings

are equal while traversing the tree, G′ is ignored and another grid

G is popped off the fringe.

This ensures that the solving algorithm, presented in Algorithm

4, does not traverse an invalid or already expanded subtree in the

game tree. If G′ is not found in this explored set, it is then stored

into a queue (described as the fringe) for further expansion as well

as the aforementioned explored set. These algorithms are repeated

until a solution is found, wherein all cells in the n2xn2 grid have

only one possible value and is still a valid grid. However, if the

reduced grid is invalid, it will not be stored in the fringe.

Algorithm 4 Grid Solving Algorithm

1: procedure Solve(f rinдe, explored,дrid)
2: while дrid .unsolved , ∅ do
3: temp ← f rinдe .pop()
4: index ,value ← MIN_POSSIBLE_VALUES(дrid .unsolved)
5: REDUCE(index ,value,дrid)
6: if VALID_GRID(дrid ′) then ▷ grid’ is the derived grid

7: f rinдe .push(grid’)
8: explored .push(grid)
9: else
10: explored .push(grid)
11: end if
12: end while
13: return grid’

14: end procedure

Figure 3: Graph of Sequential Time vs. Difficulty

2.4 Sequential Performance
We study the correlation of different puzzle difficulties to the amount

of time spent to solve the it. Figure 3 shows the total time to solve

8 different puzzles of increasing difficulty. The difficulty begins

at 5 and increases in increments of 5, where the difficulty value

correlates to different number of unsolved cells and location of each

value during puzzle setting. In sparser puzzles, the location of each

value may reduce the possibilities of another cell, thus making the

puzzle easier to solve. As we can see in the graph, as the difficulty

of the puzzle increases, the time required to solve the puzzle also

increases. From these baseline results, we can improve the time by

parallelizing the algorithm and having threads work towards the

solution in different subtrees of the game tree.

3 PARALLEL PHASE 1: IMPLEMENTATION
Our first attempt to improve the solving algorithm is by working

towards the solution in parallel. In order to parallelize the algorithm,

we start by creating threads that work on a different subtree based
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Algorithm 5 Grid Solving Algorithm - Parallel BFS

1: procedure Solve(explored,дrid)
2: f rinдe ← ∅
3: while дrid .unsolved , ∅ do
4: temp ← f rinдe .pop()
5: index ,value ← MIN_POSSIBLE_VALUES(дrid .unsolved)
6: REDUCE(index ,value,дrid)
7: if VALID_GRID(дrid ′) then ▷ grid’ is the derived grid

8: f rinдe .push(grid’)
9: explored .push(grid’)
10: else
11: explored .push(grid)
12: end if
13: end while
14: return grid’

15: end procedure
16:

17: procedure max_possible_values(дrid .unsolved)
18: ▷ unsolved contains a set of index values of cells with more

than one possible value

19: for each index ∈ unsolved do
20: if index .num_possible_values() > MAX then
21: MAX ← index
22: end if
23: end for
24: returnMAX , index .value
25: end procedure
26:

27: procedure Thread_Spawn(num_threads,дrid)
28: for num_threads do
29: index ,value ← MAX_POSSIBLE_VALUES(дrid .unsolved)
30: REDUCE(index ,value,дrid)
31: explored .push(grid)
32: spawn_thread(SOLVE(explored,дrid))
33: end for
34: end procedure

off the initial game state. In other words, threads are pre-assigned

reduced grids based off the cell with the highest branching factor,

which is found after calling MAX_POSSIBLE_VALUES().
By giving each thread a different subtree, we can utilize more

compute power to find the solution. We can not only increase the

number of grids to expanded, but also effectively search many

different paths towards the solution.

The number of active threads are limited to num_threads , where
num_threads is a user defined argument to the algorithm. By in-

creasing the number of threads, we can observe the speedup of

solving the Sudoku puzzle.

However, by introducing parallelization to the algorithm, we

need to introduce data sharing methods for both the explored set

and the fringe. As presented in algorithm 5, the explored set is

global to all spawned threads, and, similar to the sequential version,

reduced grids are placed into this set. In contrast, the fringe is local

to each thread, and is created after the thread has spawned. By

doing so, threads would independently have its own set of grids to

reduce and work towards the solution.

In order to solve the race conditions while inserting and search-

ing for already explored grids, we introduce a lock. By doing so,

only one thread can access the explored set at any one time.

When the solution is found, by meeting the same conditions as

those in the sequential version, all threads will join and the solver

will end.

3.1 Parallel Phase 1: Performance

Figure 4: Graph of Sequential Time vs. Difficulty

Figure 5: Graph of Sequential Time vs. Difficulty

In contrast to the sequential version, we only use the most dif-

ficult puzzle from the sequential version to test the speedup of

the algorithm. By doing so, we can observe the difference in time

between fewer spawned threads to more spawned threads.

3.1.1 Results. In Figure 4, we illustrate the average solve time

of 15 runs from 1 to 8 spawned threads as well as its standard

deviation. From the graph, it is apparent that the time it takes to

solve the Sudoku puzzle remains the same, with the exception of
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two spawned threads. Since our hypothesis where speedup would

occur as more threads are spawned is proven false, we needed

another set of statistics to understand why.

Figure 5 shows the average number of grids stored in the explored

set as well the average number of grids explored by each thread.

From these results, we can predict that the solution is found after, on

average, around 6000 grids are explored in the set. With this set of

data, we can assume that the solution has a minimum depth the tree.

With the current algorithm, threads do not explore deeper in the

tree faster, but rather explore widely into shallow branches in the

tree. From this observation, we can also conclude that threads that

are working on separate subtrees in the game tree are unnecessarily

exploring grids, for the reason that their subtrees do not contain

the solution. Furthermore, we can also conclude that this version

of parallelizing the algorithm does not result in any significant

speedup.

4 PARALLEL PHASE 2: IMPLEMENTATION
From the analysis in phase 1 of our parallel implementation, we

needed another method to achieve speedup in solving Sudoku puz-

zles. As observed in the results illustrated in Figure 5, we concluded

that a solution is found deeper in the game tree (typically at the

leaves), rather than at a higher level in the tree. Therefore, it would

be more relevant to use depth-first search to expand these grids.

This entails that threads work on the same subtree to quickly tra-

verse and explore deeper in that subtree. To do so, we returned

back to normal spawning methods, where threads are spawned at

the same time and are assigned work when available. As presented

in Algorithm 6, reduced grids are no longer pre-assigned to each

spawned thread. Rather, threads will obtain a new grid from the

fringe before deriving new grids.

Due to the changes from having threads work on completely

separate subtrees to having threads work on the same subtree of

the game tree, we have made the set to be global, similar to that of

the explored set.

4.1 Synchronization of the Global Fringe
One problem that arose was work starvation in spawned threads.

Two scenarios generally result in this issue: threads are able to

complete work quicker than they are able to explore new grids, or

threads have already explored all possible grids and no solution is

found. To resolve this issue, a condition variable and a mutex is

introduced to the algorithm.

For the first scenario, the condition variable will check if there is

work available in the fringe, such that the fringe , ∅. If fringe = ∅,
then the thread will wait until another thread has inserted another

grid to be explored. For the second scenario, a counter will incre-

ment when a thread is waiting, and decrement when the same

thread is no longer waiting. If the value of the counter is equal to

num_threads (user-defined), it means that there is no work avail-

able for any thread, and therefore suggests that a solution cannot

be found.

4.2 Parallel Phase 2: Performance
4.2.1 Statistical Disturbance. As presented in Figure 6, the in-

crease in performance is evident in relation to the number of

Algorithm 6 Grid Solving Algorithm - Parallel DFS

1: procedure Solve(f rinдe, explored,дrid)
2: while threads_waitinд < num_threads do
3: while f rinдe = ∅ do
4: ▷ Increments by 1 to track waiting thread

5: threads_waitinд + +
6: ▷ Condition variable that tells thread to wait

7: cv .wait()
8: ▷ Decrements by 1 after thread is no longer waiting

9: threads_waitinд − −
10: end while
11: temp ← f rinдe .pop()
12: index ,value ← MIN_POSSIBLE_VALUES(дrid .unsolved)
13: REDUCE(index ,value,дrid)
14: if VALID_GRID(дrid ′) then ▷ grid’ is the derived grid

15: f rinдe .push(grid’)
16: explored .push(grid’)
17: ▷ Condition variable to tell waiting threads that

work is available

18: cv .notify()
19: else
20: explored .push(grid)
21: end if
22: end while
23: return grid’

24: end procedure
25:

26: procedure Thread_Spawn(num_threads,дrid)
27: for num_threads do
28: spawn_thread(SOLVE(f rinдe, explored,дrid))
29: end for
30: end procedure

Figure 6: Graph of Sequential Time vs. Difficulty

spawned. However, two observations can also be made in Figure 6

in regards to the increased execution time after 6 threads as well as

the large standard deviation.

One hypothesis about the increased execution time after 6 threads

is due to an increased rate at which new grids are stored on the
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Figure 7: Graph of Sequential Time vs. Difficulty

Table 3: Speedup from 1 Thread to t Threads

Threads Total Execution Time Speedup
1 237.6147333 -

2 98.07906667 2.42x

3 94.37231333 2.52x

4 80.69686 2.94x

5 16.99702618 13.98x

6 5.275369348 45.04x

7 32.13147333 7.40x

8 41.14463667 5.78x

fringe, but do not lead to the puzzle’s solution. This is because an

increase in threads cause them to explore wider in the game subtree,

rather than following a particular path in the subtree. From this,

the exploration becomes more similar to breadth-first search rather

than depth-first search, and thereby causing performance issues

like that in Parallel Phase 1. In contrast, we found that 5 and 6

threads are optimal to solve the puzzle we tested, as their speedups

(Table 3) compared to 1 thread are 13.98x and 45.04x , respectively.
For the other observation, the large standard deviation is likely

due to the order in which grids are inserted and removed from the

fringe. Since threads that are waiting on a lock may acquire it in

a random order, and also because certain grids are closer to the

solution than others, the algorithm may find the solution earlier.

This can be supported by the single-threaded case, where it has

a near-zero standard deviation, but significantly higher execution

time.

4.2.2 Results. In Figure 7, we can see that threads are expanding
grids evenly to find the solution. For example, in thread 2, there was

an average of 5144 grids expanded, with an average of 2861 grids

expanded per thread. Furthermore, an increase in performance is

evident by the graph in Figure 6. Table 3 presents the speedup of

the execution time from t threads to execution time of the serial.

5 CONCLUSION
We proposed an implementation of a Sudoku puzzle solver and a

reduction in execution time through parallelization and different

data sharing methods. We started with a sequential version, which

contained the necessary algorithms for constraint satisfaction and

the validity of the grid.

From the sequential version, we derived our first parallel version,

which allowed threads to work separately from one another and

maintained a global explored set that was thread-safe. This first

version explored widely into shallow branches in the tree, which

did not result in any noticeable speedups in the algorithm. We also

observed that the solutions to the puzzle have a minimum depth in

the tree.

From this observation, we created the second parallel version,

which allowed threads to work together on the same branch in the

tree to quickly explore its depth. As a result, there was a significant

speedup in the algorithm, giving us an increase between 2.42x and

45.04x, depending on the number of spawned threads.

6 THINGS LEARNED
Many programming and analysis techniques were learned through-

out this project. In programming, we learned a few new algorithms

and parallel programming techniques to increase the performance

of the program, such as condition variables and constraint satis-

faction. We also learned about the impact on performance from

different thread-spawning and data sharing methods. In analysis,

we learned the importance and necessity to frequently check the

correctness and performance of each part of implementation pro-

cess. By doing so, we can reduce the amount of time debugging and

focus on improvements to the program.

As a whole, we were able to observe a significant difference in

performance between different thread management and data shar-

ing methods. Particularly, it is optimal to quickly search the depth

of the tree to find the solution to the Sudoku puzzle, rather than

widely searching shallow branches. Thus, changes to the algorithm

may be a necessary part to ensuring speedups to the project at

hand.
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